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Adaptive techniques for modeling fast transients on high-voltage lines are proposed and evaluated. These techniques seem to be a
powerful tool for their higher-order finite element analysis, bringing considerable savings both in memory and time of computation.
A typical example is presented showing the advantage of this approach.
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I. INTRODUCTION

NUMERICAL MODELING of fast transient phenomena
(mostly of atmospheric or switching origin) on high-

voltage lines is still a challenge. Although it is usually for-
mulated as a 2D task (one spatial coordinate and time), its
solution may take a long time and its convergence is often
rather poor. Presently, perhaps the most popular for its solution
is the finite-difference time domain method (FDTD) [1], [2].

II. ADAPTIVE TECHNIQUES

The paper presents an alternative approach based on a fully
adaptive higher-order finite element method (hp-FEM). The
line can generally be ended by any RLC load.

First, an adaptive method was written in time for a fixed
spatial mesh, that is based on using both explicit and implicit
Runge-Kutta methods. The fundamental drawback of these
methods is the necessity of a great amount of the time steps,
which strongly depends on the spatial mesh. This problem is
also well-known from the finite-difference approach; a finer
mesh does not generally imply a better solution (using very fine
meshes may lead to a very poor convergence or oscillations).
In the case of hp-FEM, this effect is even amplified by the
orders of the corresponding polynomials.

As for the p and h variants, difficulties still occur in
connection with the explicit time methods because of their
poor convergence. This may be caused, however, by general
properties of explicit methods for coarser meshes, where they
lose their stability.

III. NUMERICAL SOLUTION

The problem is solved using own application Agros [3], [4]
based on a fully adaptive higher-order finite element method
in cooperation with the library deal.II [5], [6]. The adaptive
solution is carried out by the Runge-Kutta methods, for which
the equations are transformed to the form

∂f (x, t)

∂t
= q (t, f (x, t)) . (1)

After successive multiplying this equation by the test func-
tions, integrating over the domain Ω and several more operation
we get the spatially discretized (1) in the form

M
dU

d t
= q (t,U) , (2)

where the function q (t,U) is the discretized form of the
function q (t, f (x, t)) and M is the mass matrix.

The algorithm also includes the transfer of solution in
particular time steps to new integration points. It also allows
setting the number of steps after which the mesh is either
refined or made coarser. This also positively contributes to the
velocity of computations.

IV. ILLUSTRATIVE EXAMPLE

The following example illustrates the methodology on a one-
phase overhead 22 kV line of length 1000 m. The line is loaded
by a surge voltage wave of the standard shape (8/20) (see Fig.
1) that is expressed by the formula

u(t) = Umax exp−63300t sin(109000t) . (3)

The line is ended by the Neumann condition.
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Fig. 1. Standard voltage wave for switching procceses

The solution is carried out using the singly-diagonally-
implicit Runge-Kutta (SDIRK) method. The equations for
voltage u and current i are given in the form

∂i

∂x
= −C ′ ∂u

∂t
−G′u , (4)

∂u

∂x
= −L′ ∂i

∂t
−R′i , (5)



where R′ = 56.8 × 10−6 Ω ·m−1, L′ = 1.6 × 10−6 H ·m−1,
C ′ = 6.94 × 10−9 F ·m−1, and G′ = 0 are the resistance,
inductance, capacitance and conductance per unit length, re-
spectively. The conductance was not considered in the model.

V. RESULTS

At the beginning of computations, a relatively fine mesh is
generated, but its successive coarsening quickly leads to the
optimal number of the degrees of freedom (DOFs). The pre-
set values follow: the number of time steps n = 200 and the
final time tstop = 10−4 s.

A. h-adaptivity

First, the task was solved using the h-adaptivity. The ele-
ments were of the second order (p = 2) and the value of the
initial global refinement was 10 (this value denotes the level
of initial uniform refinement of the mesh). Figure 2 shows the
distribution of voltage along the line at time t = 4 × 10−5 s,
the number of DOFs being 222.
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Fig. 2. Distribution of voltage along the line at time t = 4 × 10−5 s
(h-adaptivity, 222 DOFs)

B. p-adaptivity

Next, the same task was solved using the p-adaptivity. At
the beginning, the elements were of the second order and the
value of the initial global refinement was 7 (here the level of
fineness is lower because the p-adaptivity modifies the mesh
substantially faster). Figure 3 shows an analogous distribution
of voltage along the line at time t = 6 × 10−5 s, the number
of DOFs being 230.
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Fig. 3. Distribution of voltage along the line at time t = 6 × 10−5 s
(p-adaptivity, 230 DOFs)

For this kind of adaptivity, Fig. 4 shows the distribution of
the orders of polynomials for the same time t = 6× 10−5 s.
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Fig. 4. Distribution of the orders of polynomials in the elements along the
line at time t = 6× 10−5 s (p-adaptivity, 230 DOFs)

C. Comparison
Figure 5 shows the time evolution of DOFs for both variants

of adaptivity. Obviously, the p-adaptivity is much favorable, the
corresponding values at the beginning of the process are lower
almost by an order.
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Fig. 5. Time evolution of the number of DOFs

VI. CONCLUSION

The full paper will contain a comparison of parameters of
computation for the hp-FEM and Backward Differentiation
Formula-based method, both including the adaptive techniques.
The comparison will be performed for more complicated
examples including three-phase models and non-symmetries.
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